Get Answers to all your Questions

header-bg qa

Let \mathrm{ABC} be triangle such that \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}  and  \vec{b} \cdot \vec{c}=12. Consider the statements :

(\mathrm{S}1) :|(\vec{a} \times \vec{b})+(\vec{c} \times \vec{b})|-|\vec{c}|=6(2 \sqrt{2}-1)

(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)

Then

Option: 1

both (S1) and (S2) are true


Option: 2

only (S1) is true


Option: 3

only (S2) is true


Option: 4

both (S1) and (S2) are false


Answers (1)

best_answer

\vec{a}+\vec{b}+\vec{c}=0 \\

\vec{b}+\vec{c}=-\vec{a} \\

|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{b} \cdot \vec{c}=|\vec{a}|^{2} \\

|\vec{c}|^{2}=36 \Rightarrow|\vec{c}|=6

\text { S1: }|\vec{a} \times \vec{b}+\vec{c} \times \vec{b}|-|\vec{c}| \\

         \mid(\vec{a}+\vec{c}|\times \vec{b}|-|\vec{c}| \\

         |-\vec{b} \times \vec{b}|-|\vec{c}| \\

         0-6=-6 \\

S2: \vec{a}+\vec{b}+\vec{c}=0 \\

         \vec{b}+\vec{c}=-\vec{a} \\

         |\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}| \cos (\angle A C B)=|\vec{c}|^{2} \\

         \cos \mid \angle A C B)=\sqrt{\frac{2}{3}}

hence correct option is 3

Posted by

shivangi.bhatnagar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE