Get Answers to all your Questions

header-bg qa

Let  \mathrm{a,b} be two non-zero real numbers. If \mathrm{p \;and\;r} are the roots of the equation \mathrm{x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0} and \mathrm{q\; and \; s} are the roots of the equation \mathrm{x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0}, such that \mathrm{\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}} are in A.P, then \mathrm{a^{-1}-b^{-1}} is equal to _______.

Option: 1

38


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{x^{2}-8 a x+2 a=0 \qquad x^{2}+12 b x+6 b=0} \\

\mathrm{p+r=8 a \qquad } \\                         \mathrm{q+s=+2 b } \\

\mathrm{p r=2 a \qquad }\\                               \mathrm{q s=6 b }\\

\mathrm{\frac{1}{p}+\frac{1}{r}=4 \qquad } \\                           \mathrm{\frac{1}{q}+\frac{1}{s}=-2}

\mathrm{\frac{2}{q}=4 \qquad} \\                                    \mathrm{\frac{2}{r}=-2}

\mathrm{q=\frac{1}{2}}                                    \mathrm{r=-1}                                          

\mathrm{p=\frac{1}{5}\qquad } \\                                    \mathrm{s=\frac{-1}{4}} \\

\mathrm{\text { Now, } \frac{1}{a}-\frac{1}{b}=\frac{2}{p r}-\frac{6}{q s}=38 }

Hence answer is 38

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE