Get Answers to all your Questions

header-bg qa

Let f(x)= \begin{cases}(x-1)^{\frac{1}{2-x}}, & x>1, x \neq 2 \\ k & , \quad x=2\end{cases}
The value of k for which f is continuous at x=2 is
 

Option: 1

e^{-1}


Option: 2

e
 


Option: 3

e^{-2}


Option: 4

 1


Answers (1)

best_answer

 Since, the function f(x) is continuous at x=2.
\mathrm{\begin{aligned} & \therefore \lim _{x \rightarrow 2} f(x)=f(2) \Rightarrow \lim _{x \rightarrow 2}(x-1)^{\frac{1}{2-x}}=k \\ & \Rightarrow e^{\lim _{x \rightarrow 2}[(x-1)-1] \frac{1}{2-x}}=k \quad\left[\because \text { L.H.S. is in the form of } 1^{\infty}\right] \\ & \Rightarrow e^{\lim _{x \rightarrow 2}-\left(\frac{x-2}{x-2}\right)}=k \Rightarrow e^{-1}=k \Rightarrow k=\frac{1}{e} \end{aligned} }

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE