Get Answers to all your Questions

header-bg qa

Let \mathrm{A=\left(\begin{array}{cc} 1 & 2 \\ -2 & -5 \end{array}\right)}. Let \alpha, \beta \in \mathbb{R} be such that \mathrm{\alpha A^{2}+\beta A=2 I}. Then \mathrm{\alpha+\beta} is equal to

Option: 1

-10


Option: 2

-6


Option: 3

6


Option: 4

10


Answers (1)

best_answer

Characteristic equation of matric A

\mathrm{|A-\lambda I|=0} \\

\mathrm{\left|\begin{array}{cc} 1-\lambda & 2 \\ -2 & -5-\lambda \end{array}\right|=0} \\

\mathrm{\Rightarrow \lambda^{2}+4 \lambda=1} \\

\mathrm{\Rightarrow A^{2}+4-A=I} \\

\mathrm{\Rightarrow 2 A^{2}+8 A=2 I} \\      .............(1)

\mathrm{\text { given that } \alpha A^{2}+\beta A=2 I} \\       ..............(2)

\mathrm{\text { comparing equetion } (1)\& \text { (2) we get } }\\

\mathrm{\alpha=2, \beta=8} \\

\mathrm{\therefore \alpha+\beta=10}

Hence correct option is 4

 

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE