Get Answers to all your Questions

header-bg qa

Let \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} be a 4-element permutation with \mathrm{b}_{i} \in\{1,2,3, \ldots \ldots, 100\}$ for $1 \leq i \leq 4$ and $\mathrm{b}_{i} \neq \mathrm{b}_{j}$ for $i \neq j, such that either \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} are consecutive integers or \mathrm{b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4} are consecutive integers. Then the number of such permutations b_{1} b_{2} b_{3} b_{4} is equal to_____________.

Option: 1

18915


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

1. If \mathrm{b_{1},b_{2},b_{3}} are consecutive, then

   (i) \mathrm{b_{1}} can take any value from \mathrm{1,2,3,...,98}

   (ii) \mathrm{b_{2}} and \mathrm{b_{3}} are automatically fixed

   (iii) \mathrm{b_{4}} can take any of the remaining \mathrm{97} values

         \mathrm{\therefore 98\times97=9506}

2. If \mathrm{b_{2},b_{3},b_{4}} are consecutive, then

   (i) \mathrm{b_{4}} can take any value from \mathrm{3,4,5,...,100}

   (ii) \mathrm{b_{2}} and \mathrm{b_{3}} are automatically fixed

   (iii) \mathrm{b_{1}} can take any of the remaining \mathrm{97} values

        \mathrm{\therefore 98\times97=9506}

3. Cases common in 1. and 2. ( i.e, when \mathrm{b_{1},b_{2},b_{3},b_{4}} are consecutive )

    (i) \mathrm{b_{1}} can take any value from \mathrm{1,2,3,.....,97}

    (ii) \mathrm{b_{2},b_{3},b_{4}} are automatically fixed

       \mathrm{\therefore \text { Total }=9506+9506-97}\\

                          \mathrm{=18915}

Hence answer is \mathrm{18915}

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE