Get Answers to all your Questions

header-bg qa

Let \mathrm{f},\mathrm{g} : \mathrm{R} \rightarrow \mathrm{R} be functions defined by
\mathrm{f(x)}=\left\{\begin{array}{ll} {[x],} & x<0 \\ |1-x|, & x \geqslant 0 \end{array} \text { and } g(x)= \begin{cases}\mathrm{e}^{x}-x, & x<0 \\ (x-1)^{2}-1, & x \geqslant 0\end{cases}\right.
where \mathrm{[x]} denote the greatest integer less than or equal to \mathrm{x}. Then, the function fog is discontinuous at exactly :

Option: 1

One point


Option: 2

Two points


Option: 3

Three points


Option: 4

Four points


Answers (1)

best_answer

\mathrm{g\left(0^{-}\right)=e^{0}-0=1} \\

\mathrm{g(0)=g\left(0^{+}\right)=1-1=0}\\

\mathrm{\therefore g(x)\: is \: discontinuous\: at \: x=0}

\mathrm{f\left(0^{-}\right)=-1 }\\

\mathrm{f(0)= f\left(0^{+}\right)=1\\ }

\mathrm{\therefore \: f(x)\: is\: discontinuous \: at \: x=0}

 

\mathrm{\: \therefore\: we\: need \: to\: check \: fog \: continuity\: at \: x=0, at \: x\: where \: g(x)=0}

\mathrm{\text { At } x=0 }\\

\mathrm{f o g(0) =f(0)=1} \\

\mathrm{f o g\left(0^{+}\right) =f\left(0^{-}\right)=-1 }\\

\mathrm{\therefore\: Discontinuous\: at \: x=0}

\\\mathrm{At \: x=2\: } \\f o g\left(2^{+}\right)=f\left(0^{+}\right)=1

\mathrm{f o g\left(2^{-}\right)=f\left(0^{-}\right)=-1}

\mathrm{\therefore\: Discontinuous \: at \: x=2}

Hence the correct answer is option 2.

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE