Get Answers to all your Questions

header-bg qa

Let \mathrm{f(x)=\left[\tan ^2 x\right]\left[\cot ^2 x\right]} where \mathrm{[\cdot]} denotes greatest integer function then number of points at which function \mathrm{f(x)} is discontinuous in \mathrm{(0,2 \pi)}

Option: 1

0


Option: 2

3


Option: 3

4


Option: 4

7


Answers (1)

best_answer

\mathrm{f(x)=\left[\tan ^2 x\right] \cdot\left[\cot ^2 x\right]=0 \quad \forall x \in R-\left\{\frac{n \pi}{4}\right\}}

\mathrm{f(x) \text { is discontinuous for } x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}}

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE