Get Answers to all your Questions

header-bg qa

Let  \mathrm{M=\left[\begin{array}{cc} 0 & -\alpha \\ \alpha & 0 \end{array}\right]} , where \alpha is a non-zero real number and  \mathrm{N=\sum_{k=1}^{49} M^{2 k}} .  If  \mathrm{\left(I-M^{2}\right) N=-2 I}  , then the positive integral value of \alpha is _______.

Option: 1

1


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

\mathrm{M=\left[\begin{array}{cc} 0 & -\alpha \\ \alpha & 0 \end{array}\right]}

\mathrm{M^{2}=\left[\begin{array}{cc} 0 & -\alpha \\ \alpha & 0 \end{array}\right]\left[\begin{array}{cc} 0 & -\alpha \\ \alpha & 0 \end{array}\right]}

       \mathrm{=\left[\begin{array}{cc} -\alpha^{2} & 0 \\ 0 & -\alpha^{2} \end{array}\right] }\\

       \mathrm{=-\alpha^{2} \cdot I}

\mathrm{\therefore M^{4} =M^{2} \cdot M^{2}=\alpha^{4} I } \\

    \mathrm{M^{6} =M^{4} \cdot M^{2}=-\alpha^{6} I}

......

......

\mathrm{\therefore N =M^{2}+M^{4}+M^{6}+--+M^{98} }\\

\mathrm{=-\alpha^{2} I+\alpha^{4} I-\alpha^{6} I \ldots . . .49 \text { terms }} \\

\mathrm{=\left(-\alpha^{2}+\alpha^{4}-\alpha^{6}-\ldots\right) I}

\mathrm{=-\alpha^{2}\left(\frac{\left(-\alpha^{2}\right)^{49}-1}{-\alpha^{2}-1}\right) I}\\

\mathrm{Given \left(I-M^{2}\right) N=-2 I}\\

\mathrm{\Rightarrow\left(\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]-\left[\begin{array}{cc} -\alpha^{2} & 0 \\ 0 & -\alpha^{2} \end{array}\right]\right)\left(\frac{\alpha^{2}\left(-\alpha^{9 8}-1\right)}{\left(\alpha^{2}+1\right)}\right) I=-2I }

\mathrm{\Rightarrow\left(1+\alpha^{2}\right) I \cdot \frac{\alpha^{2}\left(-\alpha^{98}-1\right)}{\left(\alpha^{2}+1\right)}=-2 I }. \\

\mathrm{\Rightarrow \quad \alpha^{2}\left(-\alpha^{98}-1\right)=-2}

Only \mathrm{\alpha =1} satisfies it

Hence answer is \mathrm{1}

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE