Get Answers to all your Questions

header-bg qa

Let  \mathrm{\overrightarrow{a}=\alpha \hat{i}+2 \hat{j}-\hat{k} \: and\: \overrightarrow{b}=-2 \hat{i}+\alpha \hat{j}+\hat{k}}, where  \mathrm{\alpha \in R}. If the area of the parallelogram whose adjacent sides are represented by the vectors \mathrm{\overrightarrow{a} \: and\: \overrightarrow{b}\: is \sqrt{15\left(\alpha^{2}+4\right)}}, then the value of  2|\vec{\mathrm{a}}|^{2}+(\vec{\mathrm{a}} \cdot \vec{\mathrm{b}})|\vec{\mathrm{b}}|^{2}  is equal to :

Option: 1

10


Option: 2

7


Option: 3

9


Option: 4

14


Answers (1)

best_answer

\text{Area of parallelogram} =|\vec{\mathrm{a}} \times \vec{\mathrm{b}}|

\mathrm{=|\left|\begin{array}{ccc} i & j & k \\ \alpha & 2 & -1 \\ -2 & \alpha & 1 \end{array}\right| |} \\

\mathrm{=|(2+\alpha) i-(\alpha-2) j+\left(\alpha^{2}+4\right) {k} \mid} \\

\mathrm{=\sqrt{(2+\alpha)^{2}+(\alpha-2)^{2}+\left(\alpha^{2}+4\right)^{2}}}

Given that this area also equals \mathrm{\sqrt{15\left(\alpha^{2}+4\right)}} \\

\mathrm{\Rightarrow(2+\alpha)^{2}+(\alpha-2)^{2}+\left(\alpha^{2}+4\right)^{2}=15\left(\alpha^{2}+4\right) }\\

\mathrm{\Rightarrow 2\left(\alpha^{2}+4\right)+\left(\alpha^{2}+4\right)^{2}=15\left(\alpha^{2}+4\right)} \\

\mathrm{\Rightarrow\left(\alpha^{2}+4\right)=13 }\\

\mathrm{\Rightarrow \alpha^{2}=9}

\text{Now for}\: 2|\vec{\mathrm{a}}|^{2}+(\vec{\mathrm{a}} \cdot \vec{\mathrm{b}})|\vec{\mathrm{b}}|^{2}

|\vec{\mathrm{a}}|^{2} =\alpha^{2}+4+1=9+5=14 \\

\vec{\mathrm{a}} \cdot \vec{\mathrm{b}} =-2 \alpha+2 \alpha-1=-1 \\

|\vec{\mathrm{b}}|^{2} =4+\alpha^{2}+1=14 \\

\therefore 2|\vec{\mathrm{a}}|^{2}+(\vec{\mathrm{a}} \cdot \vec{\mathrm{b}})|\vec{\mathrm{b}}|^{2} \\

\mathrm{=2(14)+(-1)(14) }\\

\mathrm{=14}

Hence the correct answer is option 4

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE