Get Answers to all your Questions

header-bg qa

Let \overrightarrow{\mathrm{a}}=\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{\mathrm{c}}=2 \hat{i}-3 \hat{j}+2 \hat{k}. Then the number of vectors \overrightarrow{\mathrm{b}} such that \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} and |\overrightarrow{\mathrm{b}}| \in\{1,2, \ldots ., 10\} is :

Option: 1

0


Option: 2

1


Option: 3

2


Option: 4

3


Answers (1)

best_answer

Let  \vec{b}=x \hat{i}+y \hat{j}+z \hat{k}

\vec{b} \times \vec{c}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{x} \\ \hat{x} & y & z \\ 2 & -3 & 2 \end{array}\right|=\vec{a}

\mathrm{\Rightarrow (2 y+3 z) \hat{i}-(2 x-2 z) \hat{j}+(-3 x-2 y) \hat{k}= \hat{i}+\hat{j}-\hat{k}}

\mathrm{2y+3z= 1}....(1)                                 \mathrm{2y-3z= 1}......(2) 

\mathrm{3x-2y= -1}               \Rightarrow 3x+2y=1.......(3)

This system of equation is inconsistent So no such \vec{b} exist.

Hence the correct answer is option 1.

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE