Get Answers to all your Questions

header-bg qa

Let  S=(0,2 \pi)-\left\{\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}\right\}$. Let $y=y(x), x \in S, be the solution curve of the differential equation \frac{d y}{d x}=\frac{1}{1+\sin 2 x}, y\left(\frac{\pi}{4}\right)=\frac{1}{2}. If the sum of abscissas of all the points of intersection of the curve y=y(x) with the curve y=\sqrt{2} \sin x$ is $\frac{\mathrm{k} \pi}{12}$, then $\mathrm{k} is equal to ___________.

Option: 1

42


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{\frac{d y}{d x} =\frac{1}{1+\sin 2 x}} \\

\mathrm{\int d y =\int \frac{d x}{ (\sin x+\cos x)^{2}} }\\

\mathrm{\int d y =\int \frac{\sec ^{2} x}{(1+\tan x)^{2}} }

\mathrm{y(x) =-\frac{1}{1+\tan x}+c} \\

\mathrm{y\left(\frac{\pi}{4}\right) =\frac{1}{2}=\frac{-1}{2}+c } \\

\mathrm{c=1 } \\

\mathrm{y(x) =\frac{-1}{1+\tan x}+1 }

\mathrm{y(x)=\frac{-1+1+\tan x}{1+\tan x}} \\

\mathrm{y(x)=\frac{\tan x}{1+\tan x} }

Solving with \mathrm{y=\sqrt{2}\sin x }

\mathrm{\frac{\tan x}{1+\tan x}=\sqrt{2} \sin x} \\

\mathrm{\sin x=0 \quad, \frac{1}{\sqrt{2}}=\sin x+\cos x}

\mathrm{x=\pi \qquad \frac{1}{2}=\sin \left(x+\frac{\pi}{4}\right) }\\

                        \mathrm{\sin \frac{\pi}{6}=\sin \left(x+\frac{\pi}{4}\right)} \\

                        \mathrm{x+\frac{\pi}{4}=\pi-\frac{\pi}{6}, 2 \pi+\frac{\pi}{6}}

                        \mathrm{x=\frac{5 \pi}{6}-\frac{\pi}{4}} \\

                        \mathrm{x=\frac{7 \pi}{12}} \\

                        \mathrm{x=\frac{13 \pi}{6}-\frac{\pi}{4}}

                        \mathrm{x=\frac{23 \pi}{12}}

Sum of solution

\mathrm{=\pi+\frac{7 \pi}{12}+\frac{23 \pi}{12}} \\

\mathrm{=\frac{42 \pi}{12}=\frac{k \pi}{12} }\\

\mathrm{\Rightarrow k=42}

Hence answer is \mathrm{42}

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE