Get Answers to all your Questions

header-bg qa

Let \vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k} \text { and } \vec{c} be a vector such that \vec{a}+(\vec{b} \times \vec{c})=\overrightarrow{0} and \vec{b} \cdot \vec{c}=5 . Then, the value of 3(\vec{c} \cdot \vec{a}) is equal to ________.

Option: 1

0


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\vec{\mathrm{a}}+(\vec{\mathrm{b}} \times \vec{\mathrm{c}})=\overrightarrow{0} \\

\Rightarrow \vec{\mathrm{b}} \times \vec{\mathrm{c}}=-\vec{\mathrm{a}} \\

\Rightarrow \vec{\mathrm{a}}\perp \vec{\mathrm{c}} \\

\Rightarrow \vec{\mathrm{a}} \cdot \vec{\mathrm{c}}=0 \\

\Rightarrow 3(\vec{\mathrm{a}} \cdot \vec{\mathrm{c}})=0

Hence answer is 0

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE