Get Answers to all your Questions

header-bg qa

Let \left [ p \right ] indicates the floor function \leq p and  \lim_{p\rightarrow 0}p^{2}\left [ \frac{49}{p^{2}} \right ]= L. Then the function defined as f\left ( p \right )= \left [ p^{4} \right ]\sin \left ( \pi p \right )+\left [ p^{4} \right ]\cos \left ( \pi p \right )becomes discontinuous, for which of the following values of  p?

Option: 1

\sqrt{L+15}


Option: 2

\sqrt{L-15}


Option: 3

\sqrt{L-13}


Option: 4

\sqrt[4]{L-33}


Answers (1)

best_answer

The following points are noteworthy.

  • The Floor Function indicates the greatest integer function denoted mathematically as \left [ p\right] , for only real values. This function \left [ p\right] rounds downs the real number having any fractional or decimal part (if any) to the nearest integral value less than the indicated number.

  • For the real number p that can be an integer or a fraction or a decimal,\left [ p\right] is used to indicate the greatest integer function and \left [ p\right] is used to indicate the fractional or the decimal part of p  . Thus, p= \left [ p\right]+\left [ p\right] .

  • The functions \sin \left ( \pi p \right ) and \cos \left ( \pi p \right ) are both continuous for \forall p \in R .

Now, the provided function is:

f\left ( p \right )= \left [ p^{4} \right ]\sin \left ( \pi p \right )+\left [ p^{4} \right ]\cos \left ( \pi p \right )
f\left ( p \right )= \left [ p^{4} \right ]\left ( \sin \left ( \pi p \right )+\cos \left ( \pi p \right ) \right )

It is evident that f\left ( p \right ) is continuous for \forall p \in Z, and is discontinuous at those points where \left [ p^{4} \right ] is discontinuous i.e. only for non-integral values of p.

Hence, it follows that the points of discontinuity for f\left ( p \right ) are at
p=\pm \sqrt[4]{2},\pm \sqrt[4]{3},\pm \sqrt[4]{5},\cdots \cdots ,\pm \sqrt{2},\pm \sqrt{3},\pm \sqrt{5, }\cdots

Again, the provided limit function isas follows:
\lim_{p\rightarrow 0}p^{2}\left [ \frac{49}{p^{2}} \right ]= L
\lim_{p\rightarrow 0}p^{2}\left ( \frac{49}{p^{2}}-\left \{ \frac{49}{p^{2}} \right \} \right )= L
\lim_{p\rightarrow 0}\left ( p^{2}\frac{49}{p^{2}} \right )-\lim_{p\rightarrow 0}\left ( p^{2}\left \{ \frac{49}{p^{2}} \right \} \right )= L
49-0= L
L= 49

Now, evaluate the following:

\sqrt{L+15}
= \sqrt{49+15}
= \sqrt{64}
= 8

\sqrt{L-15}
= \sqrt{49-15}
= \sqrt{34}

\sqrt{L-13}
= \sqrt{49-13}
= \sqrt{36}
= 6

\sqrt[4]{L-33}
= \sqrt[4]{49-33}
= \sqrt[4]{16}
= 2

Therefore, f\left ( p \right ) would be discontinuous at \sqrt{34} or \sqrt{L-15}

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE