Get Answers to all your Questions

header-bg qa

Let n and k be positive integers such that n \geq \frac{k(k+1)}{2}. The number of solutions \left(x_1, x_2, \ldots, x_k\right),   all integers x_1 \geq 1, x_2 \geq 2, \ldots x_k \geq k, satisfying x_1+x_2+\ldots+x_k=n, is (Find in terms of m=k + n - r - 1)

Option: 1

{ }^m C_{k-1}


Option: 2

{ }^m C_{k+1}


Option: 3

{ }^m C_{k}


Option: 4

None of these


Answers (1)

best_answer

The number of solutions of x_1+x_2+\ldots+x_k=n

= Coefficient of t^n in \begin{array}{r} \left(t+t^2+t^3+\ldots\right)\left(t^2+t^3+\ldots\right) \dots \left(t^k+t^{k+1}+\ldots\right) \end{array}

= Coefficient of t^n in t^{1+2+\ldots+k}\left(1+t+t^2+\ldots\right)^k

But 1+2+\ldots+k=\frac{1}{2} k(k+1)=r   (say)

and  1+t+t^2+\ldots=\frac{1}{(1-t)}

Thus number of required solutions

= Coefficient of t^{n-r} in (1-t)^{-k}

= Coefficient of t^{n-r} in 

\begin{aligned} & {\left[1+{ }^k C_1 t+{ }^{k+1} C_2 t^2+{ }^{k+2} C_3 t^3+\ldots\right]} \\ & ={ }^{k+n-r-1} C_{k-1}={ }^{k+n-r-1} C_{k-1}={ }^m C_{k-1}, \end{aligned}   (where m=k + n - r - 1)

\begin{aligned} & =k+n-1-\frac{1}{2} k(k+1)=\frac{1}{2}\left[2 k+2 n-2-k^2-k\right] \\ & =\frac{1}{2}\left(2 n-k^2+k-2\right) \end{aligned}
 

 

 

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE