Get Answers to all your Questions

header-bg qa

Let P1 be the plane 3x -y -7z = 11 and P2 be the plane passing through the points (2, -1,0), (2,0, -1), and (5, 1,
1). If the foot of the perpendicular drawn from the point (7, 4, 1) on the line of intersection of the planes P1
and P2 is (\alpha ,\beta ,\gamma), then \alpha + \beta +\gammais equal to _____.

Option: 1

11


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

P_2 is given by \left|\begin{array}{ccc} x-5 & y-1 & z-1 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{array}\right|=0 x-y-z=3 DR of line intersection of \mathrm{P}_1 \& \mathrm{P}_2 \begin{aligned} & \left|\begin{array}{ccc} i & j & k \\ 1 & -1 & 1 \\ 3 & -1 & -7 \end{array}\right| \\ & +6 \hat{i}+4 \hat{j}+2 \hat{k} \end{aligned} Let \begin{gathered} z=0, \quad x-y=3 \\ 3 x-y=11 \\ 2 x=8 \\ x=4 \\ y=1 \end{gathered}

 

So Line is $$ \begin{aligned} & \qquad \frac{\mathrm{x}-4}{6}=\frac{\mathrm{y}-1}{4}=\frac{\mathrm{z}-0}{2}=\mathrm{r} \\ & (\alpha, \beta, \gamma)=(6 \mathrm{r}+4,4 \mathrm{r}+1,2 \mathrm{r}) \\ & 6(\alpha-7)+4(\beta-4)+2(\gamma+1)=0 \\ & 6 \alpha-42+4 \beta-16+2 \gamma+2=0 \\ & 36 \mathrm{r}+24+16 \mathrm{r}+4+4 \mathrm{r}-56=0 \\ & 56 \mathrm{r}=28 \\ & \mathrm{r}=\frac{1}{2} \\ & \begin{array}{c} \alpha+\beta+\gamma=12 \mathrm{r}+5 \\ \quad=6+5=11 \end{array} \end{aligned}

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE