Get Answers to all your Questions

header-bg qa

Let Q be the mirror image of the point P\mathrm{\left ( 1,0,1 \right )} with respect to the plane S: x+y+z=5 . If a line L passing through \mathrm{\left ( 1,-1,-1 \right )}, parallel to the line PQ meets the plane S at R, then QR^{2} is equal to:

Option: 1

2


Option: 2

5


Option: 3

7


Option: 4

11


Answers (1)

best_answer

By symmetry, QR = PR
The eqn of the plane \mathrm{S:\, x+y+z=5---(1)}
Eqn of the line L passing through \mathrm{(1,-1,-1)} and parallel to the line PQ
\mathrm{\Rightarrow L: \frac{x-1}{1}=\frac{y+1}{1}=\frac{z+1}{1}=r^{\prime}}
General point \mathrm{R\left [ r^{\prime}+1,r^{\prime}-1,r^{\prime}-1 \right ]}

\mathrm{\because \, \text{Point R lies on the plane (1)}}
\mathrm{\therefore \, r^{\prime}+1+r^{\prime}-1+r^{\prime}-1=5}
       \mathrm{ 3r^{\prime}= 6\: \Rightarrow \;r^{\prime}= 2 }

\mathrm{ R= \left ( 3,1,1 \right ) \;}

\mathrm{ Q R^{2}=PR^2 }
           \mathrm{ =\left ( 4+1+0 \right )= 5 }

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE