Get Answers to all your Questions

header-bg qa

Let R = {a, b, c, d, e} and S = {1, 2, 3, 4}. Total number of onto functions f : R \rightarrow S such that f(a) \neq 1, is equal
to _______.

Option: 1

180


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Total onto function $$ \frac{\square 5}{\lfloor\underline{L}\lfloor 2} \times\lfloor 4=240 $$ Now when $f(a)=1$ \left\lfloor 4+\frac{\underline{4}}{\lfloor 2 \underline{L}} \times\lfloor\underline{3}=24+36=60\right. so required \mathrm{f}^{\mathrm{n}}=240-60=180

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE