Get Answers to all your Questions

header-bg qa

Let V,V_{rms\,}\, and\, V_{p} respectively denotes the mean speed,root mean square speed of the molecule in ideal monoatomic gas at absolute temperature T. The mass of the molecule is m then

Option: 1

No molecules can have speed greater than \sqrt{2}V_{rms}.


Option: 2

No molecules can have speed less than \frac{V_{p}}{\sqrt2}


Option: 3

V_p<V<V_{rms}


Option: 4

The average kinetic charge of a molecule (3/4)mV_p^{2}


Answers (1)

 

Most Probable Kinetic Energy -

The kinetic energy of maximum fraction of molecules, i.e., the peak in the fraction of molecules vs. kinetic energy graph is called most probable kinetic energy. 

 

- wherein

 

 

 

 

V_{rms}= \left ( 3kT/M \right )^{1/2},\, V= \sqrt{\frac{8kT}{\Omega M}},\, V_p=\sqrt{\frac{2kT}{ M}}

So V_{p}< V< V_{rms}

Avg.Kinetic Energy =\frac{1}{2}mV^{2}_{rms}       \: \: \therefore V_{rms}=\frac{3}{2}V^{2}_{p}

K.E=\frac{3}{4}V^{2}_{p}

Posted by

Sumit Saini

View full answer