Get Answers to all your Questions

header-bg qa

Let 3,6,9,12, \ldots \text { upto } 78 terms and 5,9,13,17, \ldots \text { upto } 59 terms be two series. Then the sum of the terms common to both the series is equal to ___________

Option: 1

2223


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Both given series are \mathrm{AP's}

3,6,9,12, \ldots \\

\mathrm{a=3, d=3, n=78} . \\

5,9,13,17, \ldots \\

\mathrm{a^{\prime}=5, d^{\prime}=4, n^{\prime}=59}

Common terms to \mathrm{2AP's} . \\ also form an \mathrm{AP} \\

First term of common \mathrm{AP,A=9} \\

Common Difference \mathrm{D=lcm(d,d')} \\

                                  \mathrm{=\operatorname{lcm}(3,4)}\\ \\

                                  \mathrm{=12}

Let Nth term of this common \mathrm{AP} be its last term

Last term of first \mathrm{A P =3+(78-1) 3} \\

                                \mathrm{=234}

Last term of second \mathrm{A P =5+(59-1) 4} \\

                                      \mathrm{=237}

\mathrm{\therefore \quad A+(N-1) D \leqslant 234} \\

\mathrm{9+(N-1) 12 \leqslant 234} \\

\mathrm{N-1 \leq \frac{225}{12}} \\

\mathrm{\Rightarrow \quad N \leqslant 19.75} \\

\mathrm{\therefore \quad N=19}

\mathrm{\text{Sum of common AP}}\\

\mathrm{=\frac{19}{2}[2 \cdot 9+(19-1) 12]} \\

\mathrm{=19[9+18*6]} \\

\mathrm{=2223} \\

Hence answer is \mathrm{2223}

Posted by

sudhir.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE