Get Answers to all your Questions

header-bg qa

Let the ellipse E : \begin{aligned} & x^2+9y^2=9 \\ \end{aligned}  intersect the positive x-and y-axes at the points A and B respectively. Let the
major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the
point P. If the area of the triangle with vertices A, P and the origin O is  \begin{aligned} & \frac{m}{n} \end{aligned}  where m and n are coprime, then m – n is equal to :

Option: 1

16


Option: 2

15


Option: 3

18


Option: 4

17


Answers (1)

best_answer

Equation of line AB or AP is

\frac{x}{3}+\frac{y}{1}=1\\

x+3y=3

x=(3-3y)

Intersection point of line AP & circle is  P(x_{0},y_0)

$$ \begin{aligned} & x^2+y^2=9 \Rightarrow(3-3 y)^2+y^2=9 \\ & \Rightarrow 3^2\left(1+y^2-2 y\right)+y^2=9 \\ & \Rightarrow 5 y^2-9 y=0 \Rightarrow y(5 y-9)=0 \\ & \Rightarrow y=9 / 5 \end{aligned}

Hence,    x=3(1-y)=3\left(1-\frac{9}{5}\right)=3\left(\frac{-4}{5}\right)

x=\frac{-12}{5}

P\left(x_0, y_0\right)=\left(\frac{-12}{5}, \frac{9}{5}\right)

Area of \Delta AOP  is \frac{1}{2}\times OA\times Height

Height  = 9 / 5 , OA =3

=\frac{1}{2}\times 3\times \frac{9}{5}=\frac{27}{10}=\frac{m}{n}

Compare both side  m=27,     n=10,   \Rightarrow m-n=17

Therefore, correct answer is option-D

 

 

Posted by

Ritika Harsh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE