Get Answers to all your Questions

header-bg qa

Let the equation of plane passing through the line of intersection of the planes \mathrm{x+2y+az=2 \: and\: x-y+z=3} be \mathrm{5x-11y + bz = 6a -1}. For \mathrm{c\: \epsilon \: \: Z}, if the distance of this plane from the point \mathrm{ (a, -c, c) } is \frac{2}{\sqrt{a}} , then \frac{a+b}{c} is equal

Option: 1

-4


Option: 2

2


Option: 3

-2


Option: 4

4


Answers (1)

best_answer

\begin{aligned} & (x+2 y+a z-2)+\lambda(x-y+z-3)=0 \\ \end{aligned}

\begin{aligned} & \frac{1+\lambda}{5}=\frac{2-\lambda}{-11}=\frac{a+\lambda}{b}=\frac{2+3 \lambda}{6 a-1} \\ \end{aligned}

\begin{aligned} & \lambda=-\frac{7}{2}, a=3, b=1 \\ \end{aligned}

\begin{aligned} & \frac{2}{\sqrt{a}}=\left|\frac{5 a+11 c+b c-6 a+1}{\sqrt{25+121+1}}\right| \\ \end{aligned}

\begin{aligned} & c=-1 \\ \end{aligned}

\begin{aligned} & \therefore \frac{a+b}{c}=\frac{3+1}{-1}=-4 \end{aligned}

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE