Get Answers to all your Questions

header-bg qa

Let the maximum area of the triangle that can be inscribed in the ellipse \mathrm{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1,a>2}, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be \mathrm{6\sqrt{3}}. Then the eccentricity of the ellipse is:

Option: 1

\mathrm{\frac{\sqrt{3}}{2}}


Option: 2

\mathrm{\frac{1}{2}}


Option: 3

\mathrm{\frac{1}{\sqrt{2}}}


Option: 4

\mathrm{\frac{\sqrt{3}}{4}}


Answers (1)

best_answer

Area of   \mathrm{\triangle \underset{(A)}{A B C}=\frac{1}{2} \times 4 \sin \theta \times a(1-\cos \theta)}

for maximum area,

\mathrm {\frac{d A}{d \theta}=0}

\mathrm {2 a \cos \theta(1-\cos \theta)+2 a \sin \theta(\sin \theta)=0}\\ \mathrm{2a \left(\sin ^{2} \theta-\cos ^{2} \theta+\cos \theta\right)=0}\\ \mathrm{2 a\left(\sin ^{2} \theta-\cos ^{2} \theta+\cos \theta\right)=0}\\ \mathrm{-2 \cos ^{2} \theta+\cos \theta+1=0}

\mathrm {\cos \theta=1, \cos \theta=-\frac{1}{2}}

\mathrm {\theta=0 \quad \theta=\frac{2 \pi}{3}}

(not possibla)

\mathrm {\frac{d^{2} A}{d \theta^{2}}=2 a(4 \sin \theta \cos \theta-\sin \theta)}

at  \mathrm {\theta=\frac{2 \pi}{3} ; \quad \frac{d^{2} A}{d \theta^{2}}= negative }

Hence at \mathrm {\theta=\frac{2 \pi}{3}} , Area is maximum

maximum Area = \mathrm {=\frac{1}{2} \times 4 \times \frac{\sqrt{3}}{2} \times a\left(1+\frac{1}{2}\right)=6 \sqrt{3}\\}

\mathrm {a \sqrt{3}\left(\frac{3}{2}\right)=6 \sqrt{3}}

\mathrm {a=4}

\mathrm {\therefore b^{2}=a^{2}\left(1-e^{2}\right)}

\mathrm {4=16\left(1-e^{2}\right)}\\

\mathrm {e=\frac{\sqrt{3}}{2}}\\

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE