Get Answers to all your Questions

header-bg qa

Let the mirror image of the point (a, b, c) with respect to the plane 3 x-4 y+12 z+19=0 be (a-6, \beta, \gamma). If a+b+c=5$, then $7 \beta-9 \gamma is equal to______________.

Option: 1

137

 


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

\mathrm{\frac{x-a}{3}=\frac{y-b}{-4}=\frac{3-c}{12}=-\frac{2(3 a-4 b+12 c+19)}{3^{2}+4^{2}+12^{2}}}

\mathrm{\text { Here } x=a-6, y=\beta, z=\gamma} . \\

\mathrm{\Rightarrow \frac{a-6-a}{3}=\frac{\beta-b}{-4}=\frac{\gamma-c}{12}=\frac{-2(3 a-4 b+12 c+19)}{169}}

\mathrm{\Rightarrow 3 a-4 b+12 c =150 }\\ .............(1)

      \mathrm{a+b+c =5} \\

\mathrm{\Rightarrow 3 a+3 b+3 c =15}  .................(2)

Subtracting Eqn (1)-(2)

\mathrm{ \Rightarrow 7 b-9 c=-135}  .................(3)

\mathrm{\frac{\beta-b}{-4}=-2 \Rightarrow b=\beta-8,} \\

\mathrm{\frac{\gamma-c}{12}=-2 \Rightarrow c=\gamma+24, }

Substituting in (3)

\mathrm{7(\beta-8) -9(\gamma+24)=-135} \\

\mathrm{\Rightarrow 7 \beta-9 \gamma =56+216-135 }\\

\mathrm{=272-135=137}

So answer is \mathrm{137}

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE