Get Answers to all your Questions

header-bg qa

Let the plane containing the line of intersection of the planes P 1: x+(\lambda+4) y+z=1 \text { and } P 2: 2 x+y+z=2pass through the points (0,1,0) and (1,0,1). Then the distance of the point (2 \lambda, \lambda,-\lambda) from the plane P2 is 

Option: 1

4 \sqrt{6}


Option: 2

3 \sqrt{6}


Option: 3

5 \sqrt{6}


Option: 4

2 \sqrt{6}


Answers (1)

best_answer

\begin{aligned} & {[x+(\lambda+4) \mathrm{y}+\mathrm{z}-1]+\mu[2 \mathrm{x}+\mathrm{y}+\mathrm{z}-2]=0} \\ & (0,1,0) \\ & \text { (i) }(\lambda+4-1)+\mu[-1]=0 \\ & \quad \lambda-\mu=-3 \\ & (1,0,1) \text { (ii) } 1+\mu[1]=0 \Rightarrow \mu=-1, \lambda=-4 \\ & \therefore \text { point }(-8,-4,4) ; 2 x+y+z-2=0 \\ & \qquad \mathrm{~d}=\left|\frac{-16-4+4-2}{\sqrt{6}}\right|=\frac{18}{\sqrt{6}}=3 \sqrt{6} \end{aligned}

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE