Get Answers to all your Questions

header-bg qa

Let the plane \mathrm{ax} +\mathrm{by}+\mathrm{c} z=\mathrm{d} pass through (2,3,-5) and is perpendicular to

the planes \mathrm{2 x+y-5 z=10} and  \mathrm{ 3 x+5 y-7 z=12 \text {. } }

If  \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} are integers  \mathrm{d}>0$ and $\operatorname{gcd}(|\mathrm{a}|,|\mathrm{b}|,|\mathrm{c}|, \mathrm{d})=1,

 then the value of \mathrm{a}+7 \mathrm{~b}+\mathrm{c}+20 \mathrm{~d} is equal to :

Option: 1

18


Option: 2

20


Option: 3

24


Option: 4

22


Answers (1)

best_answer

DR's of the required plane are given by  \overrightarrow{n_{1}} \times \overrightarrow{n_{2}}

\mathrm{=\left|\begin{array}{ccc} i & j & k \\ 2 & 1 & -5 \\ 3 & 5 & -7 \end{array}\right|} \\

\mathrm{=(-7+25) i-(-14+15) j+(10-3) k} \\

\mathrm{=18 i-j+7 k}

So, the equation of required plane is

\mathrm{18 x-y+7 z=2}

\mathrm{Using (2,3,-5)}

\mathrm{36-3-35=\lambda \Rightarrow \lambda=-2}

\mathrm{Plane: 18 x-y+7 z=-2}

\mathrm{ \text { But } d>0} \\

\mathrm{-18 x+y-7 z=2} \\

\mathrm{\therefore a=-18, b=1, c=-7, d=2} \\

\mathrm{\therefore a+7 b+c+20 d} \\

\mathrm{=-18+7-7+40 }\\

\mathrm{= 22}

Hence the correct answer is option 4

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE