Get Answers to all your Questions

header-bg qa

Let the plane P pass through the intersection of the planes  2 x+3 y-z=2 and  x+2 y+3z=6 and be perpendicular to the plane 2x + y - z = 0. If d is the distance of P form the point (–7,1,1,) then d^{2} is equal to :

Option: 1

\frac{250}{83}


Option: 2

\frac{250}{82}


Option: 3

\frac{15}{53}


Option: 4

\frac{25}{83}


Answers (1)

best_answer

Plane P, is passing through intersection of the two planes, so,

\begin{aligned} & 2 x+3 y-z-2+\lambda(x+2 y+3 z-6)=0 \\ & x(2+\lambda)+y(3+2 \lambda)+z(3 \lambda-1)-2-6 \lambda=0 \end{aligned}

It is perpendicular with plane, 2 x+y-2+1=0

So, (2+\lambda) 2+(3+2 \lambda) 1+(3 \lambda-1)(-1)=0

\lambda=-8

So, plane p_1-6 x-13 y-25 z+46=0

distance of plane p from the point (-7,1,1)

$$ \begin{aligned} & d=\frac{|+42-13-25+46|}{\sqrt{36+169+625}}=\frac{50}{\sqrt{30}}= \\ & d^2=\frac{2500}{830}=\frac{250}{83} \end{aligned} $$ Ans. (1)

 

Posted by

Info Expert 30

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE