Get Answers to all your Questions

header-bg qa

Let the sets A and B denote the domain and range respectively of the function \mathrm{f(x)=\frac{1}{\sqrt{[x]-x}}}, where \mathrm{[x]} denotes the smallest integer greater than or equal to \mathrm{\mathrm{x}}. Then among the statements :
(\mathrm{S} 1): \mathrm{A} \cap \mathrm{B}=(1, \infty)-\mathrm{N}\: \: and

(\mathrm{S} 2): A \cup B=(1, \infty)

 

Option: 1

only (S1) is true
 


Option: 2

neither (S1) nor (S2) is true
 


Option: 3

only (S2) is true
 


Option: 4

both (S1) and (S2) are true


Answers (1)

best_answer

\mathrm{f(x)=\frac{1}{\sqrt{[x]-x}}}

If \mathrm{x} \in \mathrm{I}[\mathrm{x}]=[\mathrm{x}] (greatest integer function)
If \mathrm{x} \notin \mathrm{I}[\mathrm{x}]=[\mathrm{x}]+1

\begin{aligned} & \Rightarrow f(x)=\left\{\begin{array}{l} \frac{1}{\sqrt{[x]-x}}, x \in I \\ \frac{1}{\sqrt{[x]+1-x}}, x \notin I \end{array}\right. \end{}
\begin{aligned} & \Rightarrow \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l} \frac{1}{\sqrt{-\{x\}}}, \mathrm{x} \in \mathrm{I}, \text { (doesnot exist) } \\ \frac{1}{\sqrt{1-\{x\}}}, x \notin \mathrm{I} \end{array}\right. \end{}
\Rightarrow \text { domain of } \mathrm{f}(\mathrm{x})=\mathrm{R}-\mathrm{I} \\
\text { Now, } \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{1-\{\mathrm{x}\}}}, \mathrm{x} \notin \mathrm{I} \\
\Rightarrow \mathrm{x}<\{\mathrm{x}\}<1 \\
\Rightarrow 0<1 \sqrt{1-\{\mathrm{x}\}}<1 \\
\Rightarrow \frac{1}{\sqrt{1-\{\mathrm{x}\}}}>1 \\
\Rightarrow \text { Range }(1, \infty) \\
\Rightarrow \mathrm{A}=\mathrm{R}-\mathrm{I} \\
\mathrm{ B=(1 \infty) }
\mathrm{ \text { So, } A \cap B=(1, \infty)-N }
\mathrm{ A \cup B \neq(1, \infty) }

\mathrm{\Rightarrow S1} is only correct
 

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE