Get Answers to all your Questions

header-bg qa

Let the solution curve of the differential equation
\mathrm{x \frac{d y}{d x}-y=\sqrt{y^{2}+16 x^{2}}, y(1)=3\: be\: y=y(x)}. Then \mathrm{y(2)} is equal to :

Option: 1

15


Option: 2

11


Option: 3

13


Option: 4

17


Answers (1)

best_answer

\mathrm{x \frac{d y}{d x}-y =\sqrt{y^{2}+16 x^{2}} }\\

\mathrm{\Rightarrow \frac{d y}{d x} =\frac{y+\sqrt{y^{2}+16 x^{2}}}{x} }

Let  \mathrm{y=v x} \\

\mathrm{\frac{d y}{d x}=v+x \frac{d v}{d x}}

\mathrm{\Rightarrow v+x \frac{d v}{d x}=\frac{v x+\sqrt{v^{2} x^{2}+16 x^{2}}}{x} }\\

\mathrm{\Rightarrow v+x \frac{d v}{d x}=v+\sqrt{v^{2}+16}} \\

\mathrm{\Rightarrow \frac{d v}{\sqrt{v^{2}+16}}=\frac{d x}{x}}

Integrating

\mathrm{\Rightarrow \ln \left|v+\sqrt{v^{2}+16}\right|=\ln x+\ln k} \\

\mathrm{\Rightarrow v+\sqrt{v^{2}+16}=k x }\\

\mathrm{\Rightarrow \frac{y}{x}+\sqrt{\frac{y^{2}}{x^{2}}+16}=k x}

 

\mathrm{\text { As } y(1)=3} \\

\mathrm{\Rightarrow 3+\sqrt{9+16}=k} \\

\mathrm{\Rightarrow k=8 }

\mathrm{For\: x=2}\\

\mathrm{\frac{y}{2}+\sqrt{\frac{y^{2}}{4}+16}=8 \times 2} \\

\mathrm{\Rightarrow y+\sqrt{y^{2}+64}=32} \\

\mathrm{\Rightarrow \sqrt{y^{2}+64}=-y+32} \\

\mathrm{\Rightarrow y^{2}+64=y^{2}+1024-64 y} \\

\mathrm{\Rightarrow 64 y=960} \\

\mathrm{\Rightarrow y=15}

Hence answer is option 1

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE