Let Then the number of one-one functions
where P(S) denote the power set of S, such that
where
3240
__
__
__
Case – I
f(6) = S i.e. 1 option
f(5) = any 5 element subset A of S i.e.
f(4) = any 4 element subset B of A i.e.
f(3) = any 3 element subset C of B i.e.
f(2) = any 2 element subset D of C i.e.
f(1) = any 1 element subset E of D or empty subset i.e. 3 options
Total function =
Case – II
f(6) = S
f(5) = any 4 element subset A of S i.e.
f(4) = any 3 element subset B of A i.e.
f(3) = any 2 element subset C of B i.e.
f(2) = any 1 element subset D of C i.e.
f(1) = empty subset i.e. 1 options
Total function
Case – III
f(6) = S
f(5) = any 5 element subset A of S i.e.
f(4) = any 3 element subset B of A i.e.
f(3) = any 2 element subset C of B i.e.
f(2) = any 1 element subset D of C i.e.
f(1) = empty subset i.e. 1 options
Total function
Case – IV
f(6) = S
f(5) = any 5 element subset A of S i.e.
f(4) = any 4 element subset B of A i.e.
f(3) = any 2 element subset C of B i.e.
f(2) = any 1 element subset D of C i.e.
f(1) = empty subset i.e. 1 options
Total function
Case – V
f(6) = S
f(5) = any 5 element subset A of S i.e.
f(4) = any 4 element subset B of A i.e.
f(3) = any 3 element subset C of B i.e.
f(2) = any 1 element subset D of C i.e.
f(1) = empty subset i.e. 1 options
Total function =
Case – VI
f(6) = any 5 element subset A of S i.e.
f(5) = any 4 element subset B of A i.e.
f(4) = any 3 element subset C of B i.e.
f(3) = any 2 element subset D of C i.e.
f(2) = any 1 element subset E of D i.e.
f(1) = empty subset i.e. 1 options
Total function =
Total number of such functions =
Study 40% syllabus and score up to 100% marks in JEE