Get Answers to all your Questions

header-bg qa

Match List I with List II  
                    

    List I
(Current configuration)

 List II
(Magnitude of Magnetic Field at point O)
 A  I .B_0=\frac{\mu_0 I}{4 \pi r}[\pi+2]
 B.    IIB_0=\frac{\mu_0}{4} \frac{I}{r}
C.     III.  B_0=\frac{\mu_0 I}{2 \pi r}[\pi-1]
D.    IV.  B_0=\frac{\mu_0 I}{4 \pi r}[\pi+1]

 

Option: 1

A-III, B-I, C-IV, D-II


Option: 2

A-I, B-III, C-IV, D-II


Option: 3

A-III, B-IV, C-I, D-II


Option: 4

A-II, B-I, C-IV, D-III


Answers (1)

best_answer

       (A)        
                 \begin{aligned} & \mathrm{B}=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}} \times 2-\frac{\mu_0 \mathrm{I}}{2 \mathrm{r}} \\ & =\frac{\mu \mathrm{I}}{2 \mathrm{r}}\left(\frac{1}{\pi}-1\right) \end{aligned}
                  \begin{aligned} & =\frac{\mu \mathrm{I}}{2 \pi \mathrm{r}}(1-\pi) \odot \\ & =\frac{\mu \mathrm{I}}{2 \pi \mathrm{r}}(\pi-1) \otimes \end{aligned}
(B)          
               \begin{aligned} & \mathrm{B}=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}} \times \pi+\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}} \times 2 \\ & =\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}(\pi+2) \odot \end{aligned}
(C)              
                \begin{aligned} & \mathrm{B}=\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}} \cdot \pi+0+\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}} \\ & =\frac{\mu_0 \mathrm{I}}{4 \pi \mathrm{r}}(\pi+1) \otimes \end{aligned}
(D)
                \mathrm{B}=\frac{\mu_0 \mathrm{I}}{4 \mathrm{r}} \odot

Posted by

shivangi.shekhar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE