Get Answers to all your Questions

header-bg qa

The block of  mass M  moving on  the frictionless horizontal  surface collides with the spring of spring constant  and compresses it by length L.The maximum  momentum of the block after collision is

Option 1)

Zero

Option 2)

\frac{ML^{2}}{K}

Option 3)

\sqrt{MK}L

Option 4)

\frac{KL^{2}}{2M}

Answers (1)

best_answer

As we learnt in

If only conservative forces act on a system, total mechnical energy remains constant -

K+U=E\left ( constant \right )

\Delta K+\Delta U=0

\Delta K=-\Delta U

-

 

 Let initial velocity of block is v then initial energy =\frac{1}{2}mv^{2}

Final potential energy =\frac{1}{2}kx^{2}

From energy conservation 

\frac{1}{2}mv^{2}=\frac{1}{2}kx^{2}

\therefore\ v=\sqrt{}\frac{k}{m}.x\ \because x=L

\Rightarrow   \Rightarrow\ maximum\ v =(\frac{\sqrt{} k}{m})L

Therefore maximum momentum = mv

    =\sqrt{}{mkL}

Correct answer is 3

 


Option 1)

Zero

Option 2)

\frac{ML^{2}}{K}

Option 3)

\sqrt{MK}L

Option 4)

\frac{KL^{2}}{2M}

Posted by

perimeter

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE