Get Answers to all your Questions

header-bg qa

Body is moved along a straight line by a machine delivering a constant power. The distance moved by the body in time t is proportional to

Option 1)

t^{3/4}

Option 2)

t^{3/2}

Option 3)

t^{1/4}

Option 4)

t^{1/2}

Answers (2)

best_answer

As we learnt in

Power if the force is constant -

P=\frac{dw}{dt}= P= \vec{F}\cdot \vec{v}

- wherein

\vec{F}\rightarrow force

\vec{v}\rightarrow velocity

 

 As we discussed in

Power if the force is variable -

P_{av}= \frac{\Delta w}{\Delta t}= \frac{\int_{0}^{t}p\cdot dt}{\int_{0}^{t}dt}

- wherein

P\rightarrow power

dt\rightarrow short\: interval \: of\: time

 

 Power is constant    P = cosntant (K)

Since P=F.v(force\times velocity)

\therefore\ (m\frac{dv}{dt}).v=K

\Rightarrow\ v\frac{dv}{dt} = \frac{K}{m}

\Rightarrow\ \int v\ dv=\frac{K}{m}\ \int dt

\Rightarrow\ \frac{v^{2}}{2}=\frac{K}{m} t

\Rightarrow\ v=\sqrt{}\frac{2K}{m}.t^{1/2}

    S=\frac{dS}{dt}=\sqrt{}\frac{2K}{m}.t^{2}

    S=\sqrt{}\frac{2K}{m}\int_{0}^{T} {t}^{1/2}dt=\sqrt{}\frac{2K}{m}.(\frac{t^{3/2}}{3/2})|_{0}^{T}

    S=\frac{2}{3}\sqrt{}\frac{2K}{m}\ T^{3/2}

\therefore\ S\ \alpha\ T^{3/2}

Correct answer is 2


Option 1)

t^{3/4}

This is an incorrect option.

Option 2)

t^{3/2}

This is the correct option.

Option 3)

t^{1/4}

This is an incorrect option.

Option 4)

t^{1/2}

This is an incorrect option.

Posted by

perimeter

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE