Get Answers to all your Questions

header-bg qa

On the ellipse \frac{x^{2}}{8}+\frac{y^{2}}{4}= 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x+2y= 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then,the value of \left ( 5-e^{2} \right )\cdot A \, \,is:
Option: 1 12
Option: 2 6
Option: 3 14
Option: 4 24

Answers (1)

best_answer

a= 2\sqrt{2},b= 2
Let point P be \left ( 2\sqrt{2}\cos \theta ,2\sin \theta \right )
Slope \: of\: \: x+2y= 0\; \; is\; \frac{-1}{2}
\therefore Slope of tangent = 2


 
Equation of tangent at P:

T = 0

\frac{x\cdot 2\sqrt{2}\cos \theta }{8}+\frac{y\cdot 2\sin \theta }{4}= 1
\Rightarrow \frac{x \cos \theta }{2\sqrt{2}}+\frac{y\sin \theta }{2}= 1
Its\,\, slope= \frac{-\cos \theta \cdot 2}{2\sqrt{2}\sin \theta }= 2
\Rightarrow -\cot \theta= 2\sqrt{2}
\Rightarrow \cot \theta= -2\sqrt{2}

\therefore e^{2}= 1-\frac{b^{2}}{a^{2}}= 1-\frac{4}{8}= \frac{1}{2}.
Area\, of\, \Delta SP{S}'= \frac{1}{2}\cdot \left ( S{S}' \right )\cdot 2\sin \theta
                                  = \frac{1}{2}\cdot \left ( 2ae\right )2\cdot \left ( \frac{1}{3} \right )
                                  =2\sqrt{2}\cdot \frac{1}{\sqrt{2}}\cdot 2\cdot \frac{1}{3}   
                                 = \frac{4}{3}
\therefore \left ( 5-e^{2} \right )\cdot A=\left ( 5-\frac{1}{2} \right )\cdot \frac{4}{3}= \frac{9}{2}\cdot \frac{4}{3} 
                              = 6

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE