Get Answers to all your Questions

header-bg qa

One end of a thermally insulated rod is kept at a  temperature T_{1} and the other at T_{2}. The rod is composed of two sections of lengths l_{1} \: and\: l_{2} and thermal conductivitie K_{1} \: and\: K_{2} respectively. The temperature at the interface of the two sections is

Option: 1

\frac{\left ( K_{1}l_{1} T_{1}+K_{2}l_{2} T_{2}\right )}{\left ( K_{1}l_{1}+K_{2}l_{2}\right )}


Option: 2

\frac{\left ( K_{2}l_{2} T_{1}+K_{1}l_{1} T_{2}\right )}{\left ( K_{1}l_{1}+K_{2}l_{2}\right )}


Option: 3

\frac{\left ( K_{2}l_{1} T_{1}+K_{1}l_{2} T_{2}\right )}{\left ( K_{2}l_{1}+K_{1}l_{2}\right )}


Option: 4

\frac{\left ( K_{1}l_{2} T_{1}+K_{2}l_{1} T_{2}\right )}{\left ( K_{1}l_{2}+K_{2}l_{1}\right )}


Answers (1)

best_answer

Let's say temperature at interface is T.

Rate of Heat transfer through the rod is \frac{dQ}{dt}=\frac{\Delta T}{R}=\frac{T_{1}-T_{2}}{R}

R=R_{1}+R_{2}=\frac{l_{1}}{K_{1}A}+\frac{l_{2}}{K_{2}A}=\frac{1}{A} \left(\frac{l_{1}K_{2}+l_{2}K_{1}}{K_{1}K_{2}} \right )

\frac{dQ}{dt}=\frac{(T_{1}-T_{2}).AK_{1}K_{2}}{l_{1}K_{2}+l_{2}K_{1}}

Since rate of heat transfer is same through out the rod.

Rate of heat transfer through the first rod =\frac{(T_{1}-T).K_{1}A}{l_{1}}=\frac{(T_{1}-T_{2})A.K_{1}K_{2}}{l_{1}K_{2}+l_{2}K_{1}}

T_{1}-T=\frac{(T_{1}-T_{2}).K_{1}l_{f}}{l_{1}K_{2}+l_{2}K_{1}}

T=T_{1}-\frac{(T_{1}-T_{2}).K_{2}l_{f}}{l_{1}K_{2}+l_{2}K_{1}}=\frac{T_{1}l_{1}K_{2}+T_{1}l_{2}K_{1}-T_{1}l_{1}K_{2}+T_{2}K_{2}l_{1}}{l_{1}K_{2}+l_{2}K_{1}}

T=\frac{T_{1}K_{1}l_{2}+T_{2}K_{2}l_{1}}{l_{1}K_{2}+l_{2}K_{1}}

Correct option is 4.

 

Posted by

Info Expert 30

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE