\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{x+2\sin x}{\sqrt{x^{2}+2\sin x+1}-\sqrt{\sin ^{2}x-x+1}} is:

 

  • Option 1)

    6

  • Option 2)

    2

  • Option 3)

    3

  • Option 4)

    1

 

Answers (1)
V Vakul

\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{x+2\sin x}{\sqrt{x^{2}+2\sin x+1}-\sqrt{\sin ^{2}x-x+1}}

=>\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{(x+2\sin x)(\sqrt{x^{2}+2sinx+1}+\sqrt{sin^{2}x-x+1})}{(\sqrt{x^{2}+2\sin x+1})^{2}-(\sqrt{\sin ^{2}x-x+1})^{2}}

=>\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{(x+2\sin x)(\sqrt{x^{2}+2sinx+1}+\sqrt{1-cos^{2}x-x+1})}{({x^{2}+2\sin x+1})-({\sin ^{2}x-x+1})}

=>\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{(x+2\sin x)(\sqrt{x^{2}+2sinx+1}+\sqrt{2-cos^{2}x-x})}{x^{2}+2\sin x-\sin ^{2}x+x}

=>\begin{matrix} lim\\ x \to 0 \end{matrix}\frac{(x+2\sin x)(2)}{x^{2}+2\sin x-\sin ^{2}x+x}

\frac{0}{0}\;\;form\;\;use\;\;L'Hopital\;rule

\\\Rightarrow \lim_{x\rightarrow 0}\frac{(1+2\cos x)\times2}{2x+2\cos x-2\sin x\cos x+1}

=>\frac{(1+2)(2)}{0+1+2-0}

=>2


Option 1)

6

Option 2)

2

Option 3)

3

Option 4)

1

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Exams
Articles
Questions