Get Answers to all your Questions

header-bg qa

A uniform spring whose initial length is l has force const K. Spring is cut into 2 pieces of length l_{1} & l_{2} such that l_{1} = nl_{2}n is integer. Now mas 'm' is attached to first spring. The time period of its oscillation will be

  • Option 1)

    T = 2\pi \sqrt{\frac{mn}{K(n+1)}}

  • Option 2)

    T = 2\pi \sqrt{\frac{m}{K(n+1)}}

  • Option 3)

    T = 2\pi \sqrt{\frac{m}{nK}}

  • Option 4)

    T = 2\pi \sqrt{\frac{m(n+1)}{nK}}

 

Answers (1)

best_answer

K\alpha \frac{1}{l} \Rightarrow K' = \left ( \frac{n+1}{n} \right )K

\Rightarrow T = 2\pi\sqrt{\frac{mn}{K(n+1)}}  

 

Cutting of Spring -

If a spring is cut into 2 peices of length  l_{1} & l_{2} where  l_{1} = nl_{2}

Spring const of

* First part     K_{1} = \frac{K(n+1)}{n}

                     K_{2} = (n+1)K

- wherein

Formula

\frac{K_{1}}{K_{2}} = \frac{1}{n}

 

 


Option 1)

T = 2\pi \sqrt{\frac{mn}{K(n+1)}}

This is correct.

Option 2)

T = 2\pi \sqrt{\frac{m}{K(n+1)}}

This is incorrect.

Option 3)

T = 2\pi \sqrt{\frac{m}{nK}}

This is incorrect.

Option 4)

T = 2\pi \sqrt{\frac{m(n+1)}{nK}}

This is incorrect.

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE