If \int_{0}^{\frac{\pi }{2}}\frac{\cot x}{\cot x+cosec x}dx=m\left ( \pi +n \right ), then  m\cdot n is equal to :

 

 

 

  • Option 1)

    -1

  • Option 2)

    1

  • Option 3)

    -\frac{1}{2}

  • Option 4)

    \frac{1}{2}

 

Answers (1)
V Vakul

\int_{0}^{\frac{\pi }{2}}\frac{\cot x}{\cot x+\csc x}dx=\int_{0}^{\frac{\pi }{2}}\frac{\frac{\cos x}{\sin x}}{\frac{\cos x}{\sin x}+\frac{1}{\sin x}}dx

                                          =\int_{0}^{\frac{\pi }{2}}\frac{\cos x}{\cos x+1}dx

                                         =\int_{0}^{\frac{\pi }{2}}\frac{2\cos ^{2}\frac{x}{2}-1}{2\cos ^{2}\frac{x}{2}-x+x}dx

                                       =\int_{0}^{\frac{\pi }{2}}\left ( 1-\frac{1}{2}\sec ^{2}\frac{x}{2} \right )dx

                                     =\left [ x-\tan \frac{x}{2} \right ]_{0}^{\frac{\pi }{2}}

                                     =\frac{1}{2}\left [ \pi -2 \right ]

So, m=\frac{1}{2}         and     n=-2

\therefore mn=\frac{1}{2}\times -2=-1


Option 1)

-1

Option 2)

1

Option 3)

-\frac{1}{2}

Option 4)

\frac{1}{2}

Preparation Products

Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Test Series JEE Main April 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions