Get Answers to all your Questions

header-bg qa

PN is an ordinate of the parabola y^2=4 a x. A straight line is drawn through the middle point M of PN parallel to the axis meeting the parabola at Q . NQ meets the tangent at the vertex A, at a point T, then AT / NP=

Option: 1

0


Option: 2

2


Option: 3

\frac{2}{3}


Option: 4

5


Answers (1)

best_answer

Let the coordinates of P be \left(a t^2, 2 a t\right), then the coordinates of N are \left(a t^2, 0\right) and of M are \left(a t^2, a t\right)
Equation of the line through M\left(a t^2, a t\right) parallel to the axis is y=a t which meets the parabola y^2=4 a x at Q\left(a t^2 / 4, a t\right)

                     

Equation of NQ is \frac{y-0}{a t-0}=\frac{x-a t^2}{\frac{a t^2}{4}-a t^2}

\Rightarrow \quad\: \: \: \: \: \: \: \: \: y=-\frac{4}{3 t}\left(x-a t^2\right)

which meets the tangents x=0 at the vertex A at the point T \left(0, \frac{4 a t}{3}\right)

So that, A T=\frac{4 a t}{3}, \text { Also } NP=2 a t

Hence,    =\frac{A T}{N P}=\frac{4 a t}{3 \times 2 a t}=\frac{2}{3}                             

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE