Get Answers to all your Questions

header-bg qa

S1 : If from a point P(0,\alpha ) two normal other than axes are drawn to ellipse \frac{x^{2}}{25}+\frac{y^{2}}{16}=1, where \left | \alpha \right |\leq k,  then least value of k is \frac{9}{4}

S2 : The minimum and maximum distances of a point (1, 2) from the ellipse  4x^{2} + 9y^{2} + 8x - 36y + 4 = 0 are L and G, then G – L is equal to 4

S3 : If the length of latus rectum of an ellipse is one-third of its major axis. Its eccentricity is equal to \frac{2}{3}

S4 : The set of all positive values of a for which (13x-1)^{2}+(13y-2)^{2}=\left ( \frac{5x+12y-1}{a} \right )^{2} represents an ellipse is (1, 2)

       

 

 

Option: 1

TTFF


Option: 2

TTFT


Option: 3

TTTF

 


Option: 4

TFTF


Answers (1)

best_answer

 

Standard equation -

\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}= 1
 

- wherein

a\rightarrow Semi major axis

b\rightarrow Semi minor axis

 

 

 

Eccentricity -

e= \sqrt{1-\frac{b^{2}}{a^{2}}}

- wherein

For the ellipse  

\frac{x^{2}}{a^{2}}+ \frac {y^{2}}{b^{2}}= 1

 

 

S1 : Equation normal at P(\Theta ) is 5\; \; \; \; \sec \: \Theta \: x-4\: \cos \sec \Theta \: \; \; \; \; \; \; \; y=25-16 and it passes through P(0,\alpha )

\alpha =\frac{-9}{4\cos \sec \Theta } i.e. \alpha =\frac{-9}{4}\sin \Theta \:\:\:\:\:\:\left | \alpha \right |\leq \frac{9}{4}

S2 : 4x^{2}+8x+9y^{2}-36y=-4

4(x^{2}+2x+1)+9(y^{2}-4y+4)=36

\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1

\therefore G=5,L=1

S3 : \frac{2b^{2}}{a}=\frac{2a}{3}\Rightarrow 3b^{2}=a^{2}

\therefore b^{2}=a^{2}(1-e^{2})\Rightarrow 1=3(1-e^{2})\Rightarrow e=\sqrt{2/3}

S4 : The equation is \left ( x-\frac{1}{13} \right )^{2}+\left ( y-\frac{2}{13} \right )^{2}

=\frac{1}{a^{2}}\left ( \frac{5x+12y-1}{13} \right )^{2}

\therefore \frac{1}{a^{2}}<1 i.e.               a^{2}>1

 

 

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE