Get Answers to all your Questions

header-bg qa

Solid ammonium carbamate dissociates to give ammonia and carbon dioxide as follows. \mathrm{NH_2COONH_4_{\left ( s \right )}\rightleftharpoons 2NH_3_{\left ( g \right )}+CO_2_{\left ( g \right )}} At equilibrium, ammonia is added such that partial pressures of \mathrm{NH_{3}} now equals the original totoal pressure.  Calculate the ratio of the total pressure now to the original total pressure.

Option: 1

\frac{31}{27}


Option: 2

\frac{60}{40}


Option: 3

\frac{31}{9}


Option: 4

\frac{62}{27}


Answers (1)

best_answer

The reaction:-

\begin{matrix}&\mathrm{ NH_2COONH_4_{\left ( s \right )}} & \rightleftharpoons & \mathrm{ 2NH_3_{\left ( g \right )} }& + & \mathrm{CO_2_{\left ( g \right )}}\\ \textup{Initial} & & &\textup{2P} & &\textup{P} \end{matrix}

 

\mathrm{K_{p}= \left ( P_{NH_{3}} \right )^{2}\left ( P_{CO_{2}} \right )}

\mathrm{K_{p}= \left ( 2P \right )^{2}\left ( P \right )\quad.........(i)}

\mathrm{P_{T}\left ( initial \right )=3 P}

 

\begin{matrix}&\mathrm{ NH_2COONH_4_{\left ( s \right )}} & \rightleftharpoons & \mathrm{ 2NH_3_{\left ( g \right )} }& + & \mathrm{CO_2_{\left ( g \right )}}\\ \textup{Initial} & & &\textup{3P} & &\textup{P'} \end{matrix}

 

\mathrm{K_{P}=\left ( 3P \right )^{2}\left ( P' \right )\quad.............(ii)}

From eq (I) and (ii)

\\\mathrm{\left ( 2P \right )^{2}\left ( P \right )=\left ( 3P \right )^{2}\left ( P' \right ) } \\ \\\mathrm{P'=\frac{4P}{9}}

\mathrm{\frac{P_{T}\left ( new \right )}{P_{T}\left ( old \right )}=\frac{3P+P'}{3P}=\frac{3P+\frac{4P}{9}}{3P}=\frac{31}{27}}

Posted by

Nehul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions