Get Answers to all your Questions

header-bg qa

250 \mathrm{~g} solution of \mathrm{D}-glucose in water contains 10.8 \% of carbon by weight. The molality of the solution is nearest to
(Given: Atomic Weights are, \mathrm{H}, 1 \mathrm{u} ; \mathrm{C}, 12 \mathrm{u} ; \mathrm{O}, 16 \mathrm{u} )

Option: 1

1.03


Option: 2

2.06


Option: 3

3.09


Option: 4

5.40


Answers (1)

best_answer

We need to think of the reverse solution

 \text{molality}\rightarrow \text { mole of solute } \rightarrow \text { mass of } \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6
                    \rightarrow \text{weight of solvent} \rightarrow \left [ 250g-\text{mass of} \, \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6 \right ]

\mathrm{mass\: of\: \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6 \rightarrow moles \: of \: C_{6}\: present}
                                                        \mathrm{\downarrow}
                                          \text{ mass of carbon in solution.}

Now, 10.8 % of carbon by weight present in a 250 g solution
\mathrm{mass \: of \: carbon =\frac{250}{100} \times 10.8=27 \mathrm{~g} }

 \mathrm{Hence , moles\: of\: 6 C \left(C_6\right) present =\frac{27}{12 \times 6}=0.375 \, moles }

\mathrm{mole\: of \: \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6=0.375 \: moles -(1) }
\mathrm{mass \: of\: \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O}_6=0.375 \times 180=67.5 \mathrm{~g} }
\mathrm{So, mass\: of \: solvent =250 \mathrm{~g}-67.5 \mathrm{~g}=182.5 g}
\mathrm{mass \: of \: solvent =182.5 \times 10^{-3} \mathrm{~kg}}

\mathrm{Now, molality =\frac{\text { moles of } \mathrm{C}_6 \mathrm{H}_{12} \mathrm{O_{6}}}{\text { mass of solvent }}=\frac{0.375}{182.5 \times 10^{-3}}

             \mathrm{molality= 2.06}

Option (2) is correct.

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE