Get Answers to all your Questions

header-bg qa

 A straight rod of length L extends from x = a to x = L + a. The gravitational force it exerts on a point mass 'm' at x = 0, if the mass per unit length of the rod is A + Bx2 , is given by :

  • Option 1)

     Gm \left [ A \left ( \frac{1}{a + L} - \frac{1}{a} \right ) - BL \right ]

  • Option 2)

    Gm \left [ A \left ( \frac{1}{a } - \frac{1}{a +L} \right ) - BL \right ]

  • Option 3)

    Gm \left [ A \left ( \frac{1}{a} - \frac{1}{a + L} \right ) + BL \right ]

  • Option 4)

     Gm \left [ A \left ( \frac{1}{a + L} - \frac{1}{a} \right ) + BL \right ]

Answers (1)

best_answer

 

Newton's Law of Gravitation -

F\; \alpha\; \frac{m_{1}m_{2}}{r^{2}}

F\; = \frac{G\, m_{1}\, m_{2}}{r^{2}}

F\rightarrow Force    

G\rightarrow Gravitalional constant

m_1,m_2\rightarrow  Masses

r\rightarrow  Distance between masses

- wherein

Force is along the line joining the two masses

\lambda =A+Bx^{2}

assume dx element at a distance x from x=0

So dm=\lambda dx

dm=\left ( A+Bx^{2} \right )dx

dF=\frac{Gm_{1}dm}{x^{2}}

F=\int_{a}^{a+L}\frac{Gm_{1}}{x^{2}}\left ( A+Bx^{2} \right )dx

F=Gm\left ( \int_{a}^{a+L}\frac{A}{x^{2}}dx+\int_{a}^{a+L}B\, \, dx \right )

      =Gm\left [ \frac{-A}{x}+Bx \right ]_{a}^{L+a}F=Gm\left [ A\frac{1}{a}-\frac{1}{a+L}+BL\right ]

 


Option 1)

 Gm \left [ A \left ( \frac{1}{a + L} - \frac{1}{a} \right ) - BL \right ]

Option 2)

Gm \left [ A \left ( \frac{1}{a } - \frac{1}{a +L} \right ) - BL \right ]

Option 3)

Gm \left [ A \left ( \frac{1}{a} - \frac{1}{a + L} \right ) + BL \right ]

Option 4)

 Gm \left [ A \left ( \frac{1}{a + L} - \frac{1}{a} \right ) + BL \right ]

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE