If \omega = \frac{z}{z-\left ( 1/3 \right )i} and \left | \omega \right |= 1,then z lies on

  • Option 1)

    a circle

  • Option 2)

    an ellipse

  • Option 3)

    a parabola

  • Option 4)

    a straight line.

 

Answers (2)
N neha
D Divya Saini

As we learnt in

Definition of Complex Number -

z=x+iy, x,y\epsilon R  & i2=-1

- wherein

Real part of z = Re (z) = x & Imaginary part of z = Im (z) = y

 

 \omega=\frac{z}{z-\frac{1}{3}i}      &     |\omega|=1

Let z = x + iy    

Now  \omega=\frac{x+iy}{x+iy-\frac{i}{3}}=\frac{x+iy}{x+\left ( y-\frac{1}{3} \right )}

\therefore\ \; |\omega|^{2}=1^{2}=1=\frac{x^{2}+y^{2}}{x^{2}+\left(y-\frac{1}{3} \right )^{2}}

\therefore\ \; x^{2}+ \left(y-\frac{1}{3} \right )^{2}=x^{2}+y^{2}

\therefore\ \; y^{2}-\frac{2y}{3}+\frac{1}{9}=y^{2}

\therefore\ \; \frac{2y}{3}=\frac{1}{9}

\therefore\ \; y=\frac{1}{6}    straight line parallel to x-axis.

Correct option is 4.

 

 


Option 1)

a circle

This is an incorrect option.

Option 2)

an ellipse

This is an incorrect option.

Option 3)

a parabola

This is an incorrect option.

Option 4)

a straight line.

This is the correct option.

Exams
Articles
Questions