Get Answers to all your Questions

header-bg qa

Let there be a spherically symmetric charge distribution with charge density varying as \rho (r)=\rho _{0}\left ( \frac{5}{4}-\frac{r}{R} \right )\; upto\; r=R,and\; \rho (r)=0\; for\; r> R, where  r is the distance from the origin. The electric field at a distance r(r< R) from the origin is given by

  • Option 1)

    \frac{\rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{4}-\frac{r}{R} \right )

  • Option 2)

    \frac{4\pi \rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{3}-\frac{r}{R} \right )

  • Option 3)

    \frac{\rho _{0}r}{4\varepsilon _{0}}\left ( \frac{5}{3}-\frac{r}{R} \right )

  • Option 4)

    \frac{4\rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{4}-\frac{r}{R} \right )

 

Answers (2)

best_answer

As we learnt in 

Gauss's Law -

Total flux linked with a closed surface called Gaussian surface.

Formula:

\phi = \oint \vec{E}\cdot d\vec{s}=\frac{Q_{enc}}{\epsilon _{0}}

 

- wherein

No need to be a real physical surface.

 

  Qenc - charge enclosed by closed surface.

 

Volume of shell dV=4\pi\:x^{2}}dx

Q_{in}=\int_{0}^{r}\rho\:dv=\int_{0}^{r}\rho _{o}(\frac{5}{4}-\frac{x}{R})4\pi\:x^{2}dx

=4\pi\:\rho _{o}\int_{0}^{r}\rho _{o}(\frac{5}{4} x^{2}-\frac{x^{3}}{R})dx

=4\pi\:\rho _{o}[\frac{5}{12} x^{3}-\frac{x^{4}}{4R}]_{o}^{r}

=4\pi\:\rho _{o}[\frac{5}{12} r^{3}-\frac{r^{4}}{4R}]

=\frac{4\pi\:\rho _{o}}{4}[\frac{5}{3} r^{3}-\frac{r^{4}}{R}]

=\pi\:\rho _{o}[\frac{5}{3} r^{3}-\frac{r^{4}}{R}]

E.\ 4\pi\:r^{2}=\frac{q_{in}}{\varepsilon _{o}}

E.4\pi\:r^{2}=\frac{\pi\rho _{o}}{\varepsilon _{o}}[\frac{5}{3}r^{3}-\frac{r^{4}}{R}]

E=\frac{\pi \rho_{o}r^{3}}{4\pi r^{2}\varepsilon_{o}}[\frac{5}{3}-\frac{r}{R}]

\Rightarrow E=\frac{\rho_{o}{r}}{4\varepsilon_{o}}[\frac{5}{3}-\frac{r}{R}]

 

 

 

 


Option 1)

\frac{\rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{4}-\frac{r}{R} \right )

This is incorrect option

Option 2)

\frac{4\pi \rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{3}-\frac{r}{R} \right )

This is incorrect option

Option 3)

\frac{\rho _{0}r}{4\varepsilon _{0}}\left ( \frac{5}{3}-\frac{r}{R} \right )

This is correct option

Option 4)

\frac{4\rho _{0}r}{3\varepsilon _{0}}\left ( \frac{5}{4}-\frac{r}{R} \right )

This is incorrect option

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE