If f(x)=\frac{2-x\cos x}{2+x\cos x} and g(x)=\log_{e}x,(x>0) then value of the integral \int_{-\pi/4}^{\pi/4}g(f(x))dx is :
 

  • Option 1)

    \log_{e}3

  • Option 2)

    \log_{e}1

  • Option 3)

    \log_{e}e

     

  • Option 4)

    \log_{e}2

 

Answers (1)

f(x)=\frac{2-x\cos x}{2+x\cos x}g(x)=\log_{e}x\; \; [x>0)

then \int_{-\pi/4}^{\pi/4}g(f(x))d\\g(f(x))=\log_{e}\left ( \frac{2-x\cos x}{2+x\cos x} \right )

g(f(-x))=-g(f(x))

g(f(x)) is an odd function

\Rightarrow \int_{-\pi/4}^{\pi/4}g(f(x))dx=0=\log_{e}1


Option 1)

\log_{e}3

Option 2)

\log_{e}1

Option 3)

\log_{e}e

 

Option 4)

\log_{e}2

Most Viewed Questions

Preparation Products

Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Test Series JEE Main 2024

Chapter/Subject/Full Mock Tests for JEE Main, Personalized Performance Report, Weakness Sheet, Complete Answer Key,.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout JEE Main (One Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout JEE Main (Twelve Months Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 19999/- ₹ 14499/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions