Get Answers to all your Questions

header-bg qa

The number of integers which 'a' can take so that  x^{2}-ax+1> 2a^{2}  \forall  x\; \epsilon \; R is

  • Option 1)

    0

  • Option 2)

    1

  • Option 3)

    2

  • Option 4)

    3

 

Answers (1)

1\cdot x^{2}-ax+\left ( 1-2a^{2} \right )> 0\: \forall \: n\, \epsilon \, R

D< 0 will be required condition

a^{2}-4\left ( 1-2a^{2} \right )< 0

\Rightarrow \; 9a^{2}< 4\: \Rightarrow \: a\, \epsilon \, \left ( \frac{-2}{3}, \frac{2}{3} \right )

\therefore \: a=0 is only integer.

\therefore Option(B)

 

Sign of quadratic expression as positive. -

ax^{2}+bx+c will be always positive for all  x\epsilon R, If a> 0  &  b^{2}-4ac< 0  \left ( Where\; a,b,c\; \epsilon\; R \right ) .

- wherein

So, graph of  y= ax^{2}+bx+c  will be always above x-axis so ax^{2}+bx+c= 0  has no real roots.

 

 


Option 1)

0

This is incorrect

Option 2)

1

This is correct

Option 3)

2

This is incorrect

Option 4)

3

This is incorrect

Posted by

subam

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE