Get Answers to all your Questions

header-bg qa

f\left ( x \right )= -x^{2}+ax-12 and g\left ( x \right )= -x^{2}+bx-15 if both f\left ( x \right )= 0 and g\left ( x \right )= 0 have no imaginary root then minimum value of a^{2}+b^{2} equals \left ( a,b\, \epsilon \, R \right )

  • Option 1)

    90

  • Option 2)

    108

  • Option 3)

    120

  • Option 4)

    144

 

Answers (1)

Both don't have imaginary root so D\geq 0  for both

\\*\Rightarrow a^{2}-48\geq 0\; \; \; and\; \; \; b^{2}-60\geq 0\\*\Rightarrow a^{2}\geq 48\; \; \; and\; \; \; b^{2}\geq 60\\*\therefore minimum\; \; (a^{2}+b^{2})=48+60=108

 

Quadratic Expression Graph when a< 0 & D >0 -

Real and distinct roots of

f\left ( x \right )= ax^{2}+bx+c

& D= b^{2}-4ac

- wherein

 

 

 


Option 1)

90

This is incorrect

Option 2)

108

This is correct

Option 3)

120

This is incorrect

Option 4)

144

This is incorrect

Posted by

Vakul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE