Get Answers to all your Questions

header-bg qa

If the coefficients  of r^{th},\left ( r+1 \right )^{th}\: and \: \left ( r+2 \right )^{th}

terms in the binomial expansion of \left ( 1+y \right )^{m} are in A.P., then  m and r  satisfy the equation

  • Option 1)

    m^{2}-m\left ( 4r-1 \right )+4r^{2}+2= 0

  • Option 2)

    m^{2}-m\left ( 4r+1 \right )+4r^{2}-2= 0

  • Option 3)

    m^{2}-m\left ( 4r+1 \right )+4r^{2}+2= 0

  • Option 4)

    m^{2}-m\left ( 4r-1 \right )+4r^{2}-2= 0

 

Answers (1)

best_answer

As we learnt in 

Arithmetic mean of two numbers (AM) -

A=\frac{a+b}{2}

- wherein

It is to be noted that the sequence a, A, b, is in AP where, a and b are the two numbers.

 

Given that:

T, Tr+1, Tr+2 in A.P

2\times T_{r+1}=T_{r}+T_{r+2}

2\times\ ^mC_{r}=\ ^mC_{r-1}+\ ^mC_{r+1}

\Rightarrow \frac{2\times m!}{r!(m-r)!}=\frac{m!}{(r-1)!(m-r+1)!}+\frac{m!}{(r+1)!(m-r-1)!}

\Rightarrow \frac{2}{r!(m-r)!}=\frac{1}{(r-1)!(m-r+1)!}+\frac{1}{(r+1)!(m-r-1)!}

\Rightarrow \frac{2}{r(r-1)!(m-r)(m-r-1)!}=\frac{1}{(r-1)!(m-r+1)(m-r)!}+\frac{1}{(r+1)r(r-1)!(m-r-1)!}

\Rightarrow \frac{2}{r(m-r)}=\frac{1}{(m-r+1)}=\frac{1}{r(r+1)}

\Rightarrow \frac{1}{m-r}[\frac{2}{r}-\frac{1}{(m-r+1)}]=\frac{1}{r(r+1)}

\Rightarrow \frac{1}{m-r}\left[\frac{2m-3r+2}{r(m-r+1)} \right ]=\frac{1}{r(r+1)}

\Rightarrow    (2m-3r+2)(r+1)=(m-r)(m-r+1)

\Rightarrow    2m(r+1)-3r(r+1)+2(r+1)=(m-r)+(m-r)

\Rightarrow    2mr+2m-3r+2=m-2mr+r+m

\Rightarrow    m-m(4r+1)+4r-2=0

 


Option 1)

m^{2}-m\left ( 4r-1 \right )+4r^{2}+2= 0

This is incorrect

Option 2)

m^{2}-m\left ( 4r+1 \right )+4r^{2}-2= 0

This is correct

Option 3)

m^{2}-m\left ( 4r+1 \right )+4r^{2}+2= 0

This is incorrect

Option 4)

m^{2}-m\left ( 4r-1 \right )+4r^{2}-2= 0

This is incorrect

Posted by

Plabita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE