Get Answers to all your Questions

header-bg qa

The mean of the numbers a,b,8,5,10\; is\; 6 and the variance is 6.80. Then which one of the following gives possible values of a\; \; and\; \; b ?

  • Option 1)

    a=3,b=4

  • Option 2)

    a=0,b=7

  • Option 3)

    a=5,b=2

  • Option 4)

    a=1,b=6

 

Answers (1)

best_answer

As we learnt in

ARITHMETIC Mean -

For the values x1, x2, ....xn of the variant x the arithmetic mean is given by 

\bar{x}= \frac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n}

in case of discrete data.

Variance -

In case of discrete data 

\dpi{100} \sigma ^{2}= \left ( \frac{\sum x_{i}^{2}}{n} \right )-\left ( \frac{\sum x_{i}}{n} \right )^{2}

 

 mean=\frac{a+b+8+5+10}{5}=6

\Rightarrow a+b=7 - - - - - - \left ( i \right )

variance =\frac{\left ( a-b \right )^{2}+\left ( b-b \right )^{2}+\left ( 8-6 \right )^{2}+\left ( 5-6 \right )^{2}+\left ( 10-6 \right )^{2}}{5} =6\cdot 80

\Rightarrow a^{2}+b^{2}-12a-12b+36+36+4+1+16=34

\Rightarrow a^{2}+b^{2}-12\left ( a+b \right )= -59

\Rightarrow a^{2}+b^{2}= -59+12\times 7 \left                         from \left ( i \right )

=25 - - -- - - - -\left ( ii \right )

Solve (i) and (ii), we get

\left ( a,b \right )=\left \{ \left ( 3,4 \right )or\left ( 4,3 \right ) \right \}


Option 1)

a=3,b=4

Correct option

Option 2)

a=0,b=7

Incorrect option

Option 3)

a=5,b=2

Incorrect option

Option 4)

a=1,b=6

Incorrect Option

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE