The product of the perpendiculars drawn from the foci of the ellipse , \frac{x^{2}}{9}+\frac{y^{2}}{25}=1   upon the tangent to it at the point
\left ( \frac{3}{2} ,\frac{5\sqrt{3}}{2}\right ),\; is:
  • Option 1)

    3\sqrt{3}\;

  • Option 2)

    9\;

  • Option 3)

    \frac{189}{13}\;

  • Option 4)

    18

 

Answers (1)

As learnt in

Foci of Ellipse -

The two fixed points on the ellipse.

- wherein

 

 Product of perpendicular drawn from foci is always = b2

In ellipse \frac{x^{2}}{9}+\frac{y^{2}}{25}=1;\frac{x^{2}}{9}+\frac{y^{2}}{25}=1;\:a^{2}=25,\:b^{2}=9

Hence product =9


Option 1)

3\sqrt{3}\;

This option is incorrect.

Option 2)

9\;

This option is correct.

Option 3)

\frac{189}{13}\;

This option is incorrect.

Option 4)

18

This option is incorrect.

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 6999/- ₹ 5/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Knockout JEE Main January 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions